OPEN BOOK EXAM

Menofia University Faculty of Engineering Basic Engineering Sci. Department Academic Year: 2017-2018 Date : 04 / 06 / 2018

Ninoufia University

Subject : Bio-Mathematics Code: BES 508 Time Allowed: 3 hours Year : Master Total Marks: 100 Marks

Allowed Tables and Charts: All allowed (Open Book)

Answer all the following questions: [100 Marks]

Q.1	Write brief notes on the following topics:	[20]
	1. What is biomathematics? And Why to study biomathematics?	
	2. Show the steps of constructing a mathematical model.	
	3. Biomechanics and Bio-fluid mechanics, view point of blood flow.	
	4. Define the Peristaltic Motion and state some examples in a human	
	body?	
	5. Define the Pulsatile Flow and state some examples in a human	
	body? And define the Womersley Number (α)?	
Q.2	Consider a two-dimensional channel of mean width 2d, filled with a	[20]
	mixture of small spherical rigid particles in an incompressible	
	Newtonian viscous fluid under slip condition. The walls of the channel	
	are flexible on which are imposed travelling sinusoidal wave with	
	constant amplitude a (Peristaltic). The vertical displacements of the	
	upper and lower walls ($y = d$ and $y = -d$) are thus presumed to be η and	
	η , respectively, x and y are Cartesian coordinates with x measured in	
	the direction of wave propagation and y measured in the direction	
	normal to the mean position of the walls.	
Q.3	Consider an axisymmetric flow of a mixture of small spherical solid	
	particles and an incompressible Newtonian viscous fluid through a	[20]
	uniform circular cylindrical tube. The tube wall is flexible on which are	
	imposed travelling sinusoidal wave with constant amplitude b	

	measured in the direction of wave propagation, whereas r stands for	
	the radial coordinate. Write the mathematical model of this problem.	1
Q.4	Consider an axisymmetric flow of a mixture of small spherical solid	[20]
	particles and an incompressible Newtonian viscous fluid through a	
	uniform circular cylindrical tube. The tube wall is flexible on which are	
	imposed travelling sinusoidal wave with constant amplitude b	
	(Peristaltic motion). The flow in cylindrical coordinates (r, z) with z	
	measured in the direction of wave propagation, whereas r stands for	
	the radial coordinate. Write the mathematical model of this problem.	
Q.5	Let us consider the axially symmetric and fully developed pulsatile	[20]
	flow of blood in an axisymmetric cylindrical artery of radius R through	
	porous medium with body acceleration under the influence of an	
	external uniform transverse magnetic field. Blood is assumed to be	
	Newtonian, incompressible, electrically conducting and viscous fluid.	
	The fluid subjected to a constant magnetic field acts perpendicular to	
	the artery. Assume that the magnetic Reynolds number of the flow is	
	taken to be small enough.	

		Tł	nis exam n	neasures tl	ne following	ILOs		
Question Number	O1-a	O1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
Question Muniver	04-b				Q2-b	Q2-c	Q3-c	
	Knowledge & understanding skills			Intellectual Skills		Professional Skills		

Good Luck

Asst. Prof. Dr. Islam M. Eldesoky Dr. Eng. Ramzy M. Abumandour